Layer-by-layer inkjet printing of fabricating reduced graphene-polyoxometalate composite film for chemical sensors.

نویسندگان

  • Hui Zhang
  • Anjian Xie
  • Yuhua Shen
  • Lingguang Qiu
  • Xingyou Tian
چکیده

Graphene oxide (GO) nanosheets and polyoxometalate such as H(3)PW(12)O(40) (PTA) are prepared into a multilayer film via a layer-by-layer inkjet printing method. The GO/PTA composite thin film shows linear, uniform and regular layer-by-layer growth. Under UV-irradiation, a photoreduction reaction takes place in the film which converts GO to reduced GO (rGO) due to the photoreduction activity of polyoxometalate clusters. According to the cyclic voltammograms measurement, the rGO/PTA composite film displays good electrocatalytic activity for the oxidation of dopamine (DA). The oxidation peak current (I(pa)) increases gradually with increasing the dopamine concentration, which may be used in electrochemical biosensors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Graphene-Based Conducting Inks for Direct Inkjet Printing of Flexible Conductive Patterns and Their Applications in Electric Circuits and Chemical Sensors

A series of inkjet printing processes have been studied using graphene-based inks. Under optimized conditions, using water-soluble single-layered graphene oxide (GO) and few-layered graphene oxide (FGO), various high image quality patterns could be printed on diverse flexible substrates, including paper, poly(ethylene terephthalate) (PET) and polyimide (PI), with a simple and low-cost inkjet pr...

متن کامل

Layer-by-layer assembly and UV photoreduction of graphene-polyoxometalate composite films for electronics.

Graphene oxide (GO) nanosheets and polyoxometalate clusters, H(3)PW(12)O(40) (PW), were co-assembled into multilayer films via electrostatic layer-by-layer assembly. Under UV irradiation, a photoreduction reaction took place in the films which converted GO to reduced GO (rGO) due to the photocatalytic activity of PW clusters. By this means, uniform and large-area composite films based on rGO we...

متن کامل

Graphene-CdS quantum dots-polyoxometalate composite films for efficient photoelectrochemical water splitting and pollutant degradation.

rGO-CdS-H2W12 nanocomposite film was successfully fabricated by a layer-by-layer self-assembly method. The composite film was characterized by techniques such as UV-Vis spectra, XPS, and AFM. The composite film showed high photoelectronic response under the illumination of sunlight. Both current-voltage curves and photocurrent transient measurements demonstrated that the photocurrent response o...

متن کامل

A bio-enabled maximally mild layer-by-layer Kapton surface modification approach for the fabrication of all-inkjet-printed flexible electronic devices

A bio-enabled, environmentally-friendly, and maximally mild layer-by-layer approach has been developed to surface modify inherently hydrophobic Kapton HN substrates to allow for great printability of both water- and organic solvent-based inks thus facilitating the full-inkjet-printing of flexible electronic devices. Different from the traditional Kapton surface modification approaches which are...

متن کامل

Direct Inkjet Printing of Silver Source/Drain Electrodes on an Amorphous InGaZnO Layer for Thin-Film Transistors

Printing technologies for thin-film transistors (TFTs) have recently attracted much interest owing to their eco-friendliness, direct patterning, low cost, and roll-to-roll manufacturing processes. Lower production costs could result if electrodes fabricated by vacuum processes could be replaced by inkjet printing. However, poor interfacial contacts and/or serious diffusion between the active la...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 14 37  شماره 

صفحات  -

تاریخ انتشار 2012